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Abstract—Robotic devices have been proposed to meet the
rising need for high intensity, long duration, and goal-oriented
therapy required to regain motor function after neurological
injury. Complementing this application, exoskeletons can aug-
ment traditional clinical assessments through precise, repeatable
measurements of joint angles and movement quality. These
measures assume that exoskeletons are making accurate joint
measurements with a negligible effect on movement. For the
coupled and coordinated joints of the wrist and hand, the validity
of these two assumptions cannot be established by characteriz-
ing the device in isolation. To examine these assumptions, we
conducted three user-in-the-loop experiments with able-bodied
participants. First, we compared robotic measurements to an ac-
cepted modality to determine the validity of joint- and trajectory-
level measurements. Then, we compared those movements to
movements without the device to investigate the effects of device
dynamic properties on wrist movement characteristics. Lastly,
we investigated the effect of the device on coordination with a
redundant, coordinated pointing task with the wrist and hand.
For all experiments, smoothness characteristics were preserved
in the robotic kinematic measurement and only marginally
impacted by robot dynamics, validating the exoskeletons for use
as assessment devices. Stemming from these results, we propose
design guidelines for exoskeletal assessment devices.

I. INTRODUCTION

More than 90% of the seven million stroke survivors and
half of the 282,000 individuals with spinal cord injury (SCI)
in the United States require hand and wrist rehabilitation to
regain the ability to perform activities of daily living (ADL)
[1], [2]. For individuals with SCI, regaining upper extremity
function is rated more desirable than regaining standing, bowel
control, pain reduction, or sexual function [3]. In addition to
the challenge of treating such a large population, the necessary
rehabilitation regimens also require extensive (and often un-
available) resources to deliver high repetition, long duration,
task-oriented movements aimed at recovering strength and
coordination [4], [5]. To meet these labor, cost, and rising
population needs, robotic devices have been proposed as tools
for clinicians to provide accurate and repeatable high force
movements and a means to record high-resolution, quantitative
data needed to track therapeutic progress. These devices have
been clinically verified for stroke and SCI rehabilitation [6]–
[8]. For practical reasons, the same devices are often used for
both delivering therapy and assessing outcomes [9].

Unlike functional assessments such as GRASSP [10] or
Box and Blocks [11], robots afford clinicians high resolution
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measurements when assessing motor function. Several robotic
measures have been proposed, examining aspects of motion
in task and joint space. For example, Tyryshkin et al. [12]
proposed tracking hand position during an object hitting task to
create metrics which correlate with established measures in a
post-stroke population. This precise Cartesian space trajectory
tracking provides finer detail in assessing motor function than
traditional methods, which rely on coarse measurements such
as number of tasks completed within a specified time. Quan-
tifying the intuitive notion of smoothness via precise robotic
measures, particularly on the joint level via exoskeletons, will
enable analyses not available to traditional clinical outcome
measures or task-space metrics [13]–[15].

To examine these joint-level measures, it must be assumed
that these devices, designed for training regimens, are 1)
sufficient for inferring human joint angles and 2) do not alter
the movements in a significant way. The first assumption
may not be valid if there are misalignments between the
robot and human joints or if the robotic kinematic structure
oversimplifies the human joints (e.g., robotic pure rotational
joint corresponding to human roti-translational joint). Appar-
ent friction, inertia, and gravitational loads resulting in im-
perfect backdrivability, or insufficient dynamic transparency,
would invalidate the second assumption. Typical experimental
methods and metrics used to characterize robotic devices, such
as system identification techniques for characterizing inertia,
damping, and friction [16]–[18] are not sufficient to evaluate
these assumptions since they do not evaluate the robot moving
with a user’s limb. It is critical to compare measurements
from these experimental devices with an accepted, benchmark
measurement modality that can track the human limb, such
as electrogoniometry or motion capture [19]–[21]. This com-
parison is an especially critical and underreported validation
for many exoskeleton designs [22], such as the IIT-Wrist [23]
MIT-MANUS [14], InMotion3 [24], and the ARMin [25].
Further, this comparison will shed light on design guide-
lines to improve measurement capabilities of exoskeletons,
and investigate the validity of simplified kinematic designs
paired with passive degrees of freedom (DOF) to reduce
overconstraint or hyperstaticity [17], [23], [26], [27]. Specif-
ically, these tests will investigate the impact of movement
with respect to the robot has on measurements, either along
passive DOF or from the forces arising from hyperstaticity
[28]. When testing the second assumption, examining the role
that robotic dynamic properties play in influencing human
movement will be particularly important [29]. It has been
recognized that a robotic device’s inherent dynamics can affect
human movements, and researchers have proposed metrics
to quantify their effect [30] and closed loop force control
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methods to mitigate these effects [31]. However, the impact
of robot dynamics on measures of movement smoothness and
coordination of the wrist have not been fully reported. Wrist
pointing movements have been observed to be less smooth and
more variable than pointing movements of elbow and shoulder
[32]. Still, kinematic characterization of movement is an
appealing method of assessment for rehabilitation applications
since such movements can be measured non-invasively with
the very robotic devices used to deliver treatment.

To this end, we designed three experiments to evaluate
exoskeletons as wrist movement measurement devices using
the exoskeletons and motion capture system introduced in
Section II. Together, these three experiments form the set
needed to validate exoskeletal measurements for assessment,
and have protocols and measures well suited to replication on
other devices. We examine the first assumption in isolation,
by comparing robotic measurements to anatomic joint mea-
surements (Section III). We then separate the effects of robot
dynamics between joint-level effects (Section IV) and multi-
articular coordination (Section V) to investigate the second
assumption that robot dynamics have a negligible effect on
movement. To conclude, design guidelines for exoskeletal
measurement devices are discussed in detail in Section VI.

II. MEASUREMENT MODALITIES

In this section, we detail the measurement tools used to ac-
quire and approximate human joint angles. In our experiments,
we used several exoskeletons designed for the distal degrees
of freedom of the upper limb, which constituted our kine-
matic measurement modality. These include the RiceWrist-
S [17] (the wrist module of first version of READAPT
[33]), the Maestro [34] (the READAPT hand module), and
the OpenWrist [26], seen in Fig. 1. Pertinent information
regarding these devices is summarized in this section. We also
present an overview of the motion capture-based joint angle
measurement, which constituted our anatomic measurement
modality. Throughout this manuscript, we have represented
anatomic and no-robot condition measurements in blue tones,
with kinematic and robot condition measurements in red tones,
and differences between them in purple tones.

A. Exoskeletons
The experimental wrist devices used to determine kinematic

joint rotation are serial RRR exoskeletons with brushed DC
motors and backlash-free capstan cable transmissions to apply
torques to each DOF. All joint axes intersect perpendicularly
at a single point, with a passive DOF at the handle to resolve
kinematic overconstraint. These devices operate in a passive,
unpowered backdrive mode when assessing movement, and
rely on intrinsic device transparency [17] and optical en-
coders (resolutions <0.01◦) to approximate forearm pronation-
supination (PS), wrist flexion-extension (FE), and wrist radial-
ulnar deviation (RU). The hand module utilizes dynamic
cancellation control to measure index, middle, and thumb
metacarpalphalangeal (MCP) and proximal interphalangeal
(PIP) joint angles. All devices meet or exceed the range of
motion (ROM) requirements for ADL, the first requirement
for assessment [17], [26], [34].

B. Motion Capture System

Optical motion tracking (NaturalPoint) is used to determine
anatomic joint rotations. Six Optitrack Flex V100R2 100 FPS
cameras track the positions of 5mm, (Fig. 1a), 3 mm, and
11 mm (Fig. 1b) markers to acquire relative anatomic joint
angles during the pointing tasks. Markers are tracked as points
in a plane (Fig. 1a) or as rigid bodies (Fig. 1b), which are
then used to determine human joint angles. Joint angles are
either approximated via a least-squares calibration [20], [35]
(Section III and IV), or trigonometry [33] (Section V). The
calibration takes the difference between the orientation of
two rigid bodies, (in this case, the forearm and hand) in
the world frame to estimate the axes of rotation based on
single DOF calibration movements. Joint angles determined
through trigonometry were approximated as co-planar, pure
rotations, and were determined by tracking the position of
markers placed at bony landmarks [19], [36], [37] circled in
Fig. 1a. While there are limitations to placing markers on
anatomical landmarks, this measurement process does improve
repeatability within experiments, compared to methods that
track a separate handle to make measurements [21].

(a) READAPT (b) OpenWrist

Fig. 1. READAPT [33] and OpenWrist [26], the exoskeletons evaluated as
a measurement devices via kinematic analysis. Marker placement highlighted
in red, indicating point markers (circles) and rigid bodies used for anatomic
joint measurement via passive optical motion capture.

III. KINEMATIC VS. ANATOMIC MEASUREMENTS

To investigate the assumption that measurements of robotic
joint motion accurately reflect movements of the correspond-
ing human joints, we recorded movements with both the hu-
man anatomic (motion capture) and robot kinematic (encoder)
modalities while subjects completed a wrist pointing task. The
goal of this experiment is to investigate and quantify the influ-
ence that both human-robot joint misalignment and movement
with respect the robot have on kinematic measurements.

A. Experimental Methods

We designed a task requiring isolated and combined wrist
FE and RU movements in the OpenWrist [26].

1) Task Description: The task consisted of pointing move-
ments starting from a center, near neutral, position to one of
eight outbound targets, displayed on a circle whose radius cor-
responded to a constant percentage (60%) of wrist ROM [38]
as detailed in prior work [35]. After reaching and remaining
inside a target for one second, subjects would return to the
center target, as seen in Fig. 2. After five practice pointing
movements to each target, subjects performed fifteen reaching
movements per target, in a pseudo-random order, for two
speed conditions, with a visualization-suggested completion
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time (0.4 and 0.6 s). For all tasks, anatomic joint measurements
were provided as visual feedback.

2) Subjects: Nine, able-bodied, right-hand dominant sub-
jects (two female, seven male ages 20-28) completed the
experiment in compliance with Rice University’s Institutional
Review Board, protocol number IRB-FY2016-96 (656800-4).

B. Data Analysis

Both kinematic and anatomic data were were segmented
with a 2% maximum velocity threshold to isolate individual
reaching movements [14]. Anatomic measurements were fil-
tered and differentiated with a third order Savitzky-Golay filter
(21-sample, 200ms window) [39]. To investigate the degree
of agreement between these measurement modalities, first,
kinematic and anatomic joint measurements were compared in
the joint space by calculating RMS error between individual
trajectories. Then, two task-space measures of movement
smoothness were computed: correlation to a minimum jerk
speed profile (ρ) [15], and the spectral arc length (SAL) [13].
The first metric, ρ, compares a segmented velocity profile
to a minimum jerk speed profile, which has been accepted
as a benchmark for human pointing tasks [15], and ranges
from not correlated (0) to perfectly correlated (1). SAL is
the length of the Fourier magnitude spectrum of a segmented
velocity profile, with unimpaired individuals’ values in the
-1 to -2 range, and impaired individuals’ values upwards
of -5. The default settings in the MATLAB function from
Balasubramanian et al. [13] were used to compute SAL. A
value (ρ or SAL) was considered an outlier if it fell three
interquartile ranges below or above the 25th or 75th quartiles,
respectively, and disqualified the corresponding trajectory from
analysis (less than 1% of all trajectories were removed in
this manner). Since our analysis examined the differences
between anatomic and kinematic measurements, and not the
preservation of properties dependent on speed or direction, all
trajectories were analyzed together.

C. Experimental Results

Average trajectories across all subjects, and all inbound tra-
jectories for a single subject are presented in the visualization
space in Fig. 2. In addition to the characteristic curvatures
and variability expected in wrist pointing tasks, a seeming
‘rotation’ of the FE and RU axes in Fig. 2b is apparent. This
drove most of the error between joint-level measurements,
caused by a difference in the orientations of the calibrated
human joint axes and the orthogonal and intersecting joints of
the robot.

The results suggest that unintended movement with respect
to the robot could be the cause of the apparent spread of
the starting positions of inbound trajectories (Fig. 2d) which
reduce the repeatability of kinematic measures. Some inter-
target variability, caused by the inter-subject variable differ-
ences between anatomic and kinematic axes also contributes
to the variances in RMS in Fig. 3. The RMS error between
kinematic and anatomic measurements for each trajectory was
calculated to quantify these observations (see Fig. 3). All
targets had differences between the trajectories, stemming
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(d) Kinematic Inbound

Fig. 2. Average (across all subjects) trajectories 2a, 2b and all inbound trials
from one subject 2c, 2d, separated by measurement modality represent trends
seen in the results. The differences between the trajectories are largely the
result of the misalignment between the kinematic and anatomic joints, causing
the kinematic trajectories to have additional curvature and seem to be rotated.
Movement with respect to the robot, a likely source of error, is visible in the
varied starting points in Fig. 2c and 2d.
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Fig. 3. RMS error values in radians separated by DOF and target, with single
DOF targets in gray. Average errors across all targets were less than 0.062
radians. The variability is caused by range differences in the orientation of
anatomic and kinematic joint axes between subjects.

from the difference in anatomic and kinematic joint orientation
which varied between subjects within the ranges previously
reported [20]. The larger errors observed in some of the targets
were likely caused by target-specific factors such as length of
the path or ROM limits of the device, both of which impacted
the fourth target’s trajectories. Movements are consistently
measured with both the anatomic and kinematic methods (av-
erage errors are less than 0.062 radians). The variance between
these measurements is within ranges previously reported for
goniometer-based measurements. Goniometry results in fairly
high inter-observer variances, with standard deviations ranging
between 3◦ and 10◦, and intra-observer variance typically
between 1◦ and 3◦ [40]. The variability in robotic wrist
measurements is caused mainly by misalignment between
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the anatomic and kinematic joints, as well as limitations of
the calibration process, which create an average wrist joint
location. Our solution method, requiring simplification of the
wrist joint to be two intersecting and orthogonal axes, with
over-constraint resolved by a passive sliding DOF, detracts
from the joint-level accuracy of kinematic measures. The
difference between anatomic and kinematic joint orientations,
and the variability of the anatomic joint axes that result from
using robot kinematics to infer anatomic measurements of
wrist position may limit the applicability of this approach
for wrist movement assessment. Still, the observed degree of
variability and RMS errors are no greater than that obtained
from goniometry-based assessment of wrist movements. In
fact, goniometers have been shown to have cross-talk between
FE and RU joints caused by complex wrist anatomy and
simplifications made in goniometer design [41], the same chal-
lenges that we face in exoskeleton design for wrist assessment.

While the ability to use exoskeletal devices as goniometers
for measuring ROM, most robotic metrics of motor function
are based on a movement’s tangential velocity in task space.
This construction is particularly valuable for the wrist, where
using the tangential velocity would reduce the effect of errors
in joint axes estimation using robot encoder data.
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Fig. 4. Box plots for smoothness measures ρ (4a) and SAL (4b) across all
subjects, with whiskers extending to 1.5 interquartile ranges past hinges. Hu-
man anatomic measures (A) are presented on the left of each figure, with robot
kinematic (K ) on the right. Shown in 4c, the difference between anatomic
and kinematic measures is defined as ∆ = Anatomic−Kinematic.

To compare the kinematic and anatomic measurements, a
paired t-test was performed, with ρ and SAL values aver-
aged across subjects and targets, shown in Table I. Even
though there was a statistically significant difference in these
measures, they remain highly correlated. Furthermore, the
pooled standard deviations (σ) are approximately one order
of magnitude smaller than the average standard deviations for
a subject’s movements (average standard deviation for ρ and
SAL were 0.30 and 0.11, respectively), suggesting further that
although these differences are statistically significant, they are
well within the expected variability of human movement.

TABLE I
DIFFERENCE VALUES BETWEEN MEASUREMENT MODALITIES (A-K)

t-score Confidence Interval Correlation Pooled σ
ρ -3.73 (-0.094, -0.021) 0.94 0.044

SAL -8.70 (-0.041,-0.023) 0.76 0.010

IV. IMPACT OF ROBOT DYNAMICS ON WRIST KINEMATICS

Next, to validate the exoskeletons as assessment tools, we
investigated the role of robot dynamics on measurements. One

intuitive way of performing these tasks is through comparisons
between trajectories with and without the robotic assessment
device. We hypothesized that the inertia and friction properties
of the device would have a smoothing effect on the trajectories.

A. Experimental Methods

We compared data from the previous experiment to move-
ments acquired from the same subjects using the protocol
described in Section III-A without the OpenWrist exoskeleton.

B. Data Analysis

Joint measurements were segmented and the same outliers
were removed as described in Section III-B. In addition to
the movement smoothness metrics previously calculated (ρ
and SAL), two wrist curvature metrics Asum and Anet [21]
were computed to examine the effect of robot dynamics on
measured biomechanical properties. Asum represents the total
sum of the area between the trajectory and a straight line path,
and Anet represents the difference between the area on the right
and left of the straight line path (R-L=Anet).

We analyzed the effect of robot dynamics on each metric
with a linear mixed-effects model, using the lmer [42] and
car [43] packages in R [44]. Each metric was modeled as a
function of condition (robot/no robot), target (1-8), direction
(inbound/outbound), speed (fast/slow), as well as interactions
between condition and the other three as fixed effects, with
a random effect (intercept) of subject. This model assumes
that there are fundamental between-subject differences, but
the effect of condition, target, direction, speed, as well as the
interaction between them is subject-independent.

C. Experimental Results

We observed differences in movements made with and with-
out the OpenWrist. Fig. 5 presents all trajectories from a single
representative subject, displaying a few of the key differences
between the conditions. For example, the trajectories to and
from Target 1, corresponding to an isolated wrist extension
movement, are much straighter, and more tightly grouped
for the movements made within the robot compared to those
without the robot. This general trend persists for the remaining
seven targets, but is less exaggerated for the multi-DOF targets.

The differences between single- and multi-DOF move-
ments can be viewed in their velocity profiles, shown in
Fig. 6. Single-DOF movements have a gray background,
and combined FE/RU movements are in white. Single DOF
movements’ skewness is particularly of interest. Isolated FE
movements appear to have the greatest change in skewness of
any of the targets, and the isolated RU movements are the least
changed, similar to results described in prior work [29]. The
timing of the multi-DOF movements’ velocity peaks seems to
be relatively unchanged when backdriving the robot, with an
even distribution across the normalized time scale.

The impact of assessing with the robot is illustrated further
in Fig. 7. The robot has a major impact on the smoothness
correlation coefficient ρ. Movements made in the robot were
considerably more correlated with the minimum jerk trajectory
than those made in the no-robot condition. Two important
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(c) Robot Outbound
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(d) Robot Inbound

Fig. 5. All trajectories from one subject, in the visualization space, which
suggest the robot may have a smoothing effect on wrist movements.

quantifications of prior observations can be made. First, the
qualitative observations about the skewness of isolated FE
movements are supported by the largest mean values and
increase over the no-robot condition. These targets corre-
spond with movements which required the most motion on
the second robot joint. Second, isolated RU movements are
the least affected by the robot. Two conclusions could be
drawn from these observations. First, the FE joint’s inertia
is approximately 10x larger than the RU joint’s [26]. The
increased inertial load could act as a mechanical low-pass
filter, having a smoothing effect on the movement profile. This
would agree with observations of wrist movements in [45],
where inertial loads tended to aid movements in following a
minimum jerk trajectory. The second possibility is that friction
in the RU joint, higher due to its complex cable routing,
negatively impacts smoothness. This may explain why isolated
RU targets do not experience the same increase in smoothness
as isolated FE. Finally, the high degree of variability of ρ
compared to SAL matches previously reported values [15],
and deficiencies of the jerk-based measure [13].

The bar plots for SAL show that movements performed
in robot were not very different from movements performed
without the robot, and there is a decrease in the perceived
smoothness of the trajectories. There is also much less vari-
ability in SAL compared to ρ. The values for SAL, around
-1.9 for most targets, agree with values reported in [13] for
healthy subjects. Since SAL can fall as low as -5 for stroke
subjects [13], it seems reasonable to conclude that the robot
did not have a detrimental affect on SAL.

As seen in Fig. 5, movements within the robot were
straighter, and therefore Asum is lower, particularly for single-
DOF (gray) targets. For multi-DOF (white) targets, Anet

changed signs, and in general became larger in magnitude.
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Fig. 6. Normalized velocity plots with average and one standard deviation
bounds show that robot dynamics create a more qualitatively smooth and
symmetric (less skew) velocity profile. Particularly, movement smoothness
as capture by ρ values will be higher for the single DOF movements (gray
background), with isolated FE (target 1 and 5) exhibiting the largest change.

Results from the linear mixed-effects model are summa-
rized in Table II where mean values of ρ, SAL, Asum, and
Anet (averaged across subject, target, direction, and speed as
appropriate), with significant main effect of the category (far
left column) indicated by ∗, and the presence of a significant
interaction with condition indicated by †.

Specifically, there was a significant main effect of condition
for ρ (χ2(1) = 22.73, p < .001) and SAL (χ2(1) = 10.61,
p = .001). Although the change in SAL is significant, the
difference between the means, shown in Table II, is very
small. Similarly, the significant main effects for direction on
ρ (χ2(1) = 7.54, p < .001), SAL (χ2(1) = 4.44, p = .035),
and Asum (χ2(1) = 43.35, p < .001) and the significant effect
of speed on SAL (χ2(1) = 5.97, p = .015) also have small
changes in mean. The effect of speed was the smallest out
of all conditions. As expected, direction affected Asum and
Anet, but the variability of Anet values likely prevented the
difference from being significant. There was a significant main
effect of target for each metric (ρ: χ2(7) = 41.11, p < .001;
SAL:χ2(7) = 91.56, p < .001; Asum: χ2(7) = 162.22,
p < .001; Anet:χ2(7) = 89.14, p < .001), which follows
commentary that the pointing distance of a percentage of ROM
made some targets more difficult than others [35].

To investigate the significant interaction between condition
and target for ρ (χ2(7) = 44.41, p < .001) Asum (χ2(7) =
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27.56, p < .001) and Anet (χ2(7) = 88.38, p < .001), and
further quantify the previous DOF-dependent observations,
Table III reorganizes the information presented in Table II and
regroups the mean values from the linear mixed-effects model
into average values for the single-DOF FE (Targets 1 and 5)
and RU (Targets 3 and 7) targets as well as multi-DOF targets
(Targets 2, 4, 6, and 8), as described in Fig. 2a. These values
further support SAL as a valid robotic assessment metric,
and underscore the DOF-dependent observations, namely that
inertia contributes greatly to smoothness as quantified by
ρ. Also, the difference between the isolated FE and RU
movements further explains the interaction between condi-
tion and target, suggesting that, while the robot consistently

TABLE II
RESULTS OF LINEAR MIXED-EFFECTS MODEL DETAILING EFFECT OF

CONDITION, TARGET, DIRECTION, AND SPEED ON ρ, SAL, Asum , AND Anet

ρ SAL Asum Anet

Condition NR 0.410∗ -1.84∗ 14.24 -0.266
R 0.598∗ -1.88∗ 11.39 1.77

Target Min 0.383∗† -1.93∗ 8.72∗† -5.35∗†

Max 0.618∗† -1.81∗ 13.91∗† 6.02∗†

Direction In 0.490∗ -1.85∗ 10.94∗ -0.514
Out 0.518∗ -1.87∗ 14.69∗ 2.021

Speed F 0.509 -1.85∗ 12.97 0.886
S 0.499 -1.87∗ 12.67 0.621

changed the measures, FE inertia had a greater impact than
RU friction. Asum and Anet are the least changed for multi-DOF
movements, suggesting that wrist biomechanical properties are
best preserved when inertia and friction do not artificially
constrain movement to one robot DOF.

TABLE III
EXAMINING EFFECT OF CONDITION SEPARATED BY TARGET TYPE

FE Targets RU Targets Multi-DOF
NR R NR R NR R

ρ 0.429 0.736 0.430 0.577 0.392 0.616
SAL -1.86 -1.89 -1.81 -1.82 -1.83 -1.86
Asum 11.22 4.00 17.91 5.91 13.78 6.41
Anet 3.44 1.11 -1.64 1.90 -1.78 0.243

V. IMPACT OF ROBOT DYNAMICS ON COORDINATED
HAND-WRIST MOVEMENTS

The previous results suggest that robotic assessment can
affect coordinated movement in different ways, with aspects
of movement smoothness increasing (ρ), and aspects of move-
ment quality decreasing (SAL). However, the near collocation
and coupling of the RU and FE joints may not generalize
to couplings between more disparate coordinated joints, such
as the hand and wrist. In addition to the functional coor-
dination required to perform ADL, the hand and wrist are
also kinematically and dynamically linked due to tendon and
muscle anatomy [46], which extends to biomechanical cou-
plings which manifest themselves in finger and wrist position-
dependent passive properties [47], [48]. Loss of coordinated
joint control is a key disability to overcome in stroke and
SCI rehabilitation, and one of the main therapeutic targets for
Parkinson’s disease [49]. Due to its importance in rehabilita-
tion and the preceding results, the impact of robot dynamics
on coordinated hand-wrist movements is our next focus.

A. Experimental Methods

To explore wrist and hand coordination, we designed a
redundant, planar pointing task requiring movement of the
MCP and wrist FE joints either unconstrained or in the first
version of the READAPT [33]. The task’s redundancy arises
from the 1D manifold of satisfactory MCP and FE angle solu-
tions. These solution configurations can be separated into in-
phase (same direction) and out-of-phase (opposite directions)
movements based on the relative motion of the finger and wrist
joints, following prior work [47].
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1) Task Description: Subjects pointed to targets in one of
two locations by flexing or extending the wrist and flexing or
extending the MCP joint. This pointing movement could be
achieved with a user-selected movement coordination between
wrist and MCP (unconstrained, UC) with both joints forced
to be flexed or both extended (in-phase, IP) or with one
joint flexed and the other extended (out of phase, OP). All
solution configurations and target locations are shown in Fig.
8, with the planar mapping between MCP and wrist FE
and the visualization shown in Fig. 8a. Different solution
configurations were achieved by making the position of the
obstacles a function of the wrist and finger angles, reducing
the solution manifold as shown in Fig. 8. The planar mapping
of the joints was ensured by constraining subjects’ forearms
to a planar surface. Subjects received tasks grouped by their
solution configuration, either unconstrained (Fig. 8a and 8d),
in-phase (Fig. 8b and 8e), or out-of-phase (Fig. 8c and 8f).
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Fig. 8. Each subfigure shows one task, with the visualization and correspond-
ing hand pose on top. The bottom figure is the solution manifold, in green, of
joint angles that reach the target and avoid the obstacle, with MCP and wrist
FE as the horizontal and vertical axes, respectively.

The tasks were grouped by solution configuration, and
subjects performed the unconstrained tasks first, then the
constrained configurations, with breaks to prevent fatigue.
Each task was initialized by requiring a movement to a neutral
position before a pseudo random target (flexion or extension)
would be presented, and each task ended once a subject had
pointed at the target for one second. Subjects performed ten
training movements for each target in each solution configura-
tion, then fifty pseudorandomized tasks. Subjects then repeated
this protocol while wearing the robot.

2) Subjects: Nine right hand dominant, able-bodied sub-
jects (eight female, one male), ages 21-30 completed the study
in compliance with Rice University’s Institutional Review
Board, protocol number IRB-FY2016-96 (656800-4).

B. Data Analysis

We characterized the interaction between the robot and
natural movement with the time between joint velocity peaks,
(inter-peak time) and the maximum deviation from a straight
line in the joint space (straight line deviation). A coordinated
movement should have simultaneous execution, resulting in
low inter-peak times and straight line deviations. We hypothe-
sized that the exoskeleton could distort synergistic multi-DOF
trajectories into sequential single-DOF movements.
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Fig. 9. Sample trajectories highlighting the discoordination characteristics.
The example trajectory in 9a supports our hypothesis that natural movements
have simultaneous velocity peaks, and discoordination manifest as time
between finger and wrist velocity peak in the robot task (9b). The trajectories,
when viewed in the joint-space (9c, 9d) also confirm hypotheses concerning
straight line deviation. For these tasks, the solution manifold is in gray, average
straight line path in dotted green, with individual and average trajectories in
blue or red. The characteristic of discoordination is the movement along the
axes (9d), instead of the simultaneous movement (9c).

Filtering and differentiation were accomplished via a third-
order Savitzky-Golay filter with a 21-sample (200 ms) window.
Inter-peak time was defined as ∆T = tp,w − tp,MCP , where
positive values indicate the MCP joint preceded the wrist. The
maximum distance between the trajectory and a straight line
path between the initial and final positions was defined as the
straight line deviation. One measure was considered an outlier
by falling outside of three interquartile ranges from the 25th or
75th percentile, and the corresponding trajectory was removed
from analysis. Mean deviations of these metrics were analyzed
through a factorial repeated ANOVA.

C. Experimental Results

The data presented in Fig. 9 suggests that wearing the robot
resulted in the distortion of multi-DOF, coordinated trajecto-
ries into sequential, single-DOF movements, where the MCP
joint precedes FE movement, resulting in higher values for
both IPT and SLD. The unconstrained movements in Fig. 10
show that natural pointing involves simultaneous movement,
as evidenced by the tightly grouped, small magnitudes for
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IPT and SLD. Second, this plot suggests that natural in-
phase movements are similar to unconstrained movements,
with similar values on both inter-peak time and straight line
deviation. For both of these movement types, the interaction
with the robot perturbed the coordination, increasing the
magnitude and variability of both measures.
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Fig. 10. Interpeak time (IPT, top) and Straight Line Deviation (SLD, bottom)
results. Unconstrained and in-phase tasks were effected by the robot in a
statistically significant way, likely due to the greater inertial and friction
characteristics of the wrist exoskeleton. However, the difference was not
significant for the unfamiliar out-of-phase movements, which may not possess
the same strong coordination as the in-phase and unconstrained.

There was an interaction between no-robot/robot and move-
ment category for both interpeak time (F (1.26, 10.05) =
5.4, p = 0.04, η2p = .40) and straight line deviation
(F (1.45, 11.6) = 17.35, p = 0.001, η2p = .68). Decomposing
these interactions using simple main effects showed an effect
for unconstrained and in-phase movements, but not for out-of-
phase movements, as described in Table IV.

TABLE IV
EFFECT OF ROBOT ON INTER-PEAK TIME AND STRAIGHT LINE DEVIATION

Inter-peak Time Straight Line Deviation
F(1,8) p η2p F(1,8) p η2p

UC 28.6 0.001 0.781 20.4 0.002 0.710
IP 36.7 <0.001 0.82 26.6 0.001 0.769
OP 3.6 0.095 0.31 2.1 0.185 0.208

VI. DISCUSSION

In this paper we present results from three experiments
designed to investigate the implicit assumptions made when
using exoskeletons for motor function assessment. These key
assumptions are that 1) the kinematic measurements from
the device correspond to anatomic joint measurements and 2)
kinematic movement properties are preserved when using the
robot as a measurement device.

The first experiment (Section III) examined robot kinematic
and human anatomic joint measurements. Specifically, we
investigated the impact of robot joint orientation on inferences
of human joint angle measurements. The trajectories suggest
that simplifications in robot kinematic design decrease the
accuracy of joint-level wrist measurement with the device
but are comparable to accepted goniometric measurements.
Broadly, while device inertia and friction helped ‘smooth’
trajectories, the soft connection between the robot and the
human will always allow for some anatomic movement with
respect to the robot, smoothing movement in a similar manner.
Both of these negative effects should be taken into account,
particularly when describing movement analyses. Furthermore,
coupling between the wrist FE and RU joints suggests that
analyses of movements about perpendicular flexion/extension
and radial/ulnar deviation axes may obscure important coupled
characteristics. It is the authors’ opinion that analyses of iso-
lated wrist DOFs are problematic regardless of measurement
modality, which has been suggested previously [41]. There-
fore, we recommend that coordinated FE and RU velocity
profiles be analyzed together with intuitive metrics such as ρ
(correlation to a minimum jerk trajectory) and SAL (length
of Fourier magnitude spectrum). Furthermore, movements
characteristics ρ and SAL are preserved in both methods of
data collection (via robotic or via motion capture of anatomic
joint measurements). We observed small effect sizes and high
correlations between measurement modalities. Together, these
findings suggest that robot kinematics reasonably replicate
accepted goniometry and accurately capture movement char-
acteristics of the wrist.

The second experiment examined the effect of the robot on
natural movement. Analysis of movement smoothness metrics,
ρ and SAL revealed two ways that movement was impacted
by the human-robot interactions. Inertia and static friction
in robot joints tend to increase ρ by reducing skewness of
movements, and filtering corrective submovements, and this
effect was greater for the joint with the greater inertia [29].
This observation, along with the changes measured by SAL,
strongly suggests that robotic joints actuating each wrist DOF
should ideally have small and matching dynamic properties.
In this particular case, the RU robotic joint is only double the
inertia of the hand [26], [50], and made only a small effect.
These experiments further support the use of SAL for wrist
movement smoothness measurement analysis, in that SAL is
largely preserved when movements are measured via a robotic
device compared to motion capture of anatomic movements.

The DOF-dependent results of Asum and Anet also reveal
guidelines for analysis and device design. The consistently
lower Asum values, along with some of the lower Anet values
for single-DOF movements suggest that the inertia and static
friction of the robot joint roughly perpendicular to the move-
ment reduced the natural curvature of these movements, an
effect not seen in the combined DOF movements. Several of
the remaining Anet values changed sign, which could be the
result of misalignment between the anatomic and kinematic
joints. Since static friction and inertia can never be completely
removed, ideal wrist assessment practices should engage mul-
tiple DOF to avoid this effect. Ideally, these multiple wrist
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DOF would have identical inertial properties which represent a
small increase to the intrinsic inertia of the wrist. Similarly, the
friction properties should be as small and isotropic as possible.
In the case of the OpenWrist, the inertial and frictional
properties are approaching satisfactory values, with most of
the movement characteristics in Fig. 7 preserved, validating the
use of this device for assessment. We expect that the relative
importance of these design guidelines should decrease with
lower device inertia and friction. While active compensation
of device dynamics can be achieved with feed-forward torque
control, this technique has been shown to have little impact
on movement smoothness [29]. Devices that do not meet
these design guidelines should only measure movements that
engage multiple robotic DOF, to minimize the disturbance to
smoothness characteristics. However, the impact of inertia is
expected to be reduced with impaired users, since their relative
velocities and coordination patterns are anticipated to be lower
than those of able-bodied users.

The third experiment (Section V) examined the effect of
the robot on coordinated movement. Since robot dynamics
have an impact on the coupled dynamics of the wrist [38],
[50], considering their impact on movements of non-collocated
coupled joints, such as the hand and wrist, is important for
rehabilitation of coordinated tasks. As expected, coordination,
in the form of kinematic coupling of the velocity, was per-
turbed by the exoskeleton in a statistically significant way
for natural movements. The inertia of the wrist module is
likely the cause of this decoupling, with wrist FE inertia
approximately five times larger than that of the wrist [50].
Commonplace movements may have more refined, and po-
tentially sensitive, internal models used by the neuromuscular
system [51], whereas the models for out of phase movements
are less developed and potentially less likely to be disturbed.
We expect individuals with significant motor impairment to not
possess these highly refined and therefore sensitive models,
and it is reasonable to expect their movements, like out of
phase movements, to not be impacted by the robot.

In summary, we propose the following design guidelines for
robotic devices intended as kinematic assessment tools:

1) Match device ROM to human capability [15], [17], [18].
2) Use high-resolution sensors [15], [17], [18]
3) Ensure anatomic and kinematic joint alignment via sim-

plifications [17], [26] or individualized design [27]
4) Display low, isotropic inertia. Results suggest doubling

intrinsic inertia is satisfactory for healthy individuals.
5) Minimize static friction in the device.
6) Engage multiple robotic DOF during assessment to

reduce effects of friction on measurements.
Future work on robotic assessment of motor function should

focus on the development and comparison of lightweight
inertially isotropic devices and impedance-matched (as a pro-
portion of joint inertia) anisotropic devices in experiments with
healthy and impaired populations.

VII. CONCLUSION

To meet rising needs and leverage new assessment modal-
ities, robots are being utilized in rehabilitation as therapeutic
and assessment tools. Their measurement of joint and task

space movement hinges on two assumptions. First, it is typ-
ically assumed that the human and robot joints are aligned,
and second, wearing the exoskeleton does not significantly
impact movement. For multi-articular joints such as the wrist,
validating these assumptions are not trivial. To investigate the
validity of these assumptions, we conducted three experiments.
First, we evaluated the accuracy of kinematic joint measure-
ment compared to anatomic joint measurements. For the tested
pointing task, the kinematic measures were comparable to
accepted goniometry despite limitations caused by movement
relative to the device and the variable (between subjects)
and changing (within subjects) anatomic joint axes orien-
tation. Kinematic measurements also preserved movement
smoothness characteristics key to many robotic assessments.
To investigated the second assumption, we conducted two
experiments comparing movement with to movement without
the robot. The second experiment identified effects of device
inertia on wrist movement smoothness, and recommended the
use of inertially isotropic wrist devices, with assessment not
along robot joints, but rather of coordinated movements of
both the human and robot joints. The last experiment examined
the interaction between exoskeletons and hand-wrist motor
coordination, and showed that familiar coordinations were
perturbed for healthy individuals, but unfamiliar movements
were not significantly impacted by the presence of a robotic
assessment device. We hypothesize that these unfamiliar tasks
constitute the bulk of movements made by individuals with
neuromuscular motor impairment. Therefore, we conclude that
the kinematic data from robotic wrist exoskeletons reliably
represent human movement and preserves smoothness char-
acteristics. Stemming from these results, we propose design
guidelines for exoskeletons as measurement devices.
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